Übungen zum Mathematik-Abitur

Analysis 6

Gegeben ist eine Funktionenschar $f_t(x) = 3 \cdot x \cdot e^{-t \cdot x^2}$ t>0

- 1) Führen Sie für allgemeines t eine vollständige Kurvendiskussion durch und zeichnen Sie für t=0,5 den Graphen von $f_{0.5}$ im Bereich -3 \le x \le 3 (1 LE \equiv 2 cm)
- 2) Für welche Werte von t
 - a) liegt P(1|2) auf dem Graphen von ft,
 - b) ist $x_e = -5$ eine Extremwertstelle,
 - c) beträgt der Maximumwert 3,
 - d) liegt bei $x_w = 0.5$ ein Wendepunkt?
- 3) Bestimmen Sie die Gleichung der Tangenten, die an der Stelle x₀ an den Graphen von f_t gelegt werden kann.

Betrachten Sie nun die Tangente g_t an der Stelle $x_0 = 1$.

Welche Achsenabschnitte besitzt g_t?

Bestimmen Sie den Flächeninhalt des Dreiecks, das der Graph von gt und die beiden zugehörigen Achsenabschnitte bilden.

Welchen Flächeninhalt hat dieses Dreieck für t = 2?

Für welche Werte von t ist das Dreieck gleichschenklig? (Berechnung auf zwei Nachkommastellen!)

- 4) Zeigen Sie, dass $F_t(x) = -\frac{3}{2t} \cdot e^{-t \cdot x^2} + c$ eine Stammfunktion von f_t ist. (Benutzen Sie dafür sowohl den HDI als auch ein Integrationsverfahren.)
- 5) Der Graph von f_t und die positive x-Achse begrenzen eine ins Unendlich reichende Fläche. Berechnen Sie deren Inhalt A(t):
- 6) Welche Ursprungsgeraden schneiden den Graphen von ft mehr als einmal?